

11100 Johns Hopkins Road Laurel, MD 20723-6099

Lunar Networking

Edward J. Birrane, Ph.D. Johns Hopkins University, Applied Physics Laboratory (JHU/APL) Edward.Birrane@jhuapl.edu (W) 443-778-7423

Networks Enable Lunar Exploration

Data Challenges

- Higher lunar data volume
 - 10-100x
- Uneven comms coverage
 - Mission-specific relays
 - No global lunar coverage
 - Direct-to-Earth requires wellresourced platforms

Data Solutions

- Shared Infrastructure
 - Reduce per-mission costs
 - Broader coverage
 - More & faster paths to Earth
- Networking Semantics
 - Resilient path diversity
 - Data security & scalability

Networking Past GEO is a Challenge

- "Space networks" operate around LEO
 - Very expensive thousands of spacecraft
 - Terrestrial network technology fails at/near LEO
 - User lag unacceptable at GEO

- Harder challenges for Lunar networks
 - Luna is ~9x further away than GEO
 - Requires new networking technology
 - Requires new governance/usage models

What is a Lunar Network?

- A network is:
 - The emergent behavior of many cooperating networking devices.
 - Routers, switches, hubs, etc...
 - We do not "purchase" a network...
 - We purchase networking devices.
- A network **is not** a point-to-point link
 - Spacecraft have multiple terminals
 - Mesh, Directional RF, Optical
- A network is not a single relay
 - Relays have different orbits, compatibilities, services, administration, and performance characteristics

Unifying Links

Networks unify communications links

- There is no "magic radio/terminal" to rule them all
- Spacecraft may have multiple (and different) "links"
 - Mesh, Directional RF, Optical.
 - Different personalities. Different security/performance.
- Vendor solutions do not always interoperate
 - Even when implementing same "standards"
- Environments can be challenged and contested
 - Planned and unplanned disruptions
 - (Un)planned disruptions.

• A Unifying Lunar Network

- Simplifies application development.
- Provides traffic engineering & management services.
- Has interoperable, standardized *syntactic* behavior.
- Has consistent, configurable <u>semantic</u> behavior.

Space Networking...

- Allows for targeted capabilities (Good)
- Provides path diversity and resilience (Good)
- Requires coordination (Hard)
- Must scale over the years (Hard)
- Requires sharing from the start (Really Hard)

Network Systems Engineering

Network engineering is more than addressing technology gaps

- What are the components of an operational space network?
 - Identify technology gaps
 - Discuss data and control flows
 - Understand contributions of vendors\standards
 - Recommend on next steps for standards activity
 - Avoid local minima (aka... the easy way out)

Three perspectives from APL supporting:

- CCSDS (Peter Shames)
- IOAG (Jim Schier)
- IPNSIG (Vint Cerf, strategy working group)
- Observations
 - Diversity is our friend
 - Need to track advancements from industry and others
 - Converging on proper terminology important

A CCSDS Perspective

The Three-Phased Solar System Internet

- The CCSDS is defining "stages of evolution" of the SSI concept
 - Stages 1, 2a, 2b, and 3
 - **Stage 1**: Mission Functionality
 - $_{\odot}~$ Bespoke solutions.
 - Test individual technologies.
 - Stage 2: Internetwork Functionality
 - 2a: Manually (possibly mission-specific) management
 - 2b: Interoperable configuration and management.
 - More emphasis here on security
 - Stage 3: Advanced Functionality
 - The network we want.
 - Peering, networking, authorization agreements.

"End-to-End" – Forward, <u>SSI Stage 2 ESLT</u>

Source: CCSDS, "Space Communications Cross Support Architecture Requirements", CCSDS 901.1-M-1, dated May 2015

An IOAG Perspective

Lunar governance and operations

- How do we govern?
 - What are governance structures and approaches?
 - What organizations should participate in creating these?
 - How are lunar networks same/different from the Internet?
 - What are steps to implementation
- Guiding Principles
 - Open architecture
 - Interoperability with open international standards
 - Scalable and dynamic
 - Secure and resilient
 - Consensus-based decisions
 - Open, inclusive, transparent peer participation
 - Extensible across the solar system

An IPNSIG Perspective

https://ipnsig.org/wp-content/uploads/2021/10/IPNSIG-SWG-REPORT-2021-3.pdf

- Key properties of an SSI
 - Collaboration
 - Global Standards
 - Stability
 - Democracy
 - Affordability
 - Expandability
 - Security

APL

Table-1 Incentives and challenges for cooperation

Incentives for cooperation (co-creation, risk-sharing, pooling & sharing)				
Governments	Private actors			
Ensure access to technologies and services	Access to know-how, resources, and financial support			
Support a sustainable model for space exploration	Gain credibility, validate their capabilities			
Foster domestic industry growth and cooperation	Create potential revenue streams			

Challenges to cooperation (co-creation, risk-sharing, pooling & sharing)				
Governments	Private actors			
Mutual understanding of expectations and goals Establishment of appropiate cost and risk-sharing schemes Change in government priorities and funding Commercial viability and profitability				

IPNSIG STRATEGY WORKING GROUP REPORT

STRATEGY TOWARD A SOLAR SYSTEM INTERNET FOR HUMANITY

Yosuke Ka	aneko	Vinton	Cerf	Scott	Burleigh
	Maria	Luque	Kiyohisa	Suzuki	

https://www.nasa.gov/directorates/heo/scan/engineering/technology/disruption_tolerant_networking_history https://www.nasa.gov/directorates/heo/scan/engineering/technology/disruption_tolerant_networking

Identified Technology Gaps

How to standardize those for everyone

- Store and Forward Data Exchange
 - Do not assume a path exists all at once.
 - **Do not** assume endpoints remember things for you.
 - **Do not** retransmit from the source. Inchworm through the network.
 - **Do** store data for milliseconds... or days.
 - **Do** carry all data and metadata in the same message.

• End-to-end Security

- **Do not** rely solely on physical layer security.
- **Do** secure different parts of a packet separately.
- **Do** optimize for security at rest.

• Autonomy as Network Management

- **Do not** assume an operator in the loop.
- **Do** incorporate autonomy and automation. Operator "on" the loop.
- **Do** push information proactively into the network.
- **Do** be compatible with terrestrial management approaches.

Routing

- **Do** adjust to time-variant topologies.

Where do we standardize things?

Two significant standards organizations

• Open to anyone

Requires space agency Sponsorship

We must mix cultures, experiences, and expertise.

A space internet is a combination of space expertise and internet expertise.

IETF DTNWG – How to Participate

- Review online materials
 - DTNWG has a "homepage".
 - https://datatracker.ietf.org/wg/dtn/documents/
- Watch meetings on YouTube
 - Search for "IETF # DTN" on YouTube.
 - For example, "IETF 115 DTN"
 - <u>https://www.youtube.com/watch?v=kqA-19a_XQY</u>
- Join the mailing list
 - Mailing list homepage.
 - <u>https://www.ietf.org/mailman/listinfo/dtn</u>
 - Subscribe or view archive
- Attend a meeting
 - <u>https://ietf.org</u>
 - Virtual attendance is supported!

Delay/Disruption Tolerant Networking (dtn)							
About Documents	Meetings History	Photos	Email expansions	List archive »			
Search							
Document 🗘					Date	• •	Status 🗘
Active Internet-Drafts (Active Internet-Drafts (3 hits)						
draft-ietf-dtn-bpv7-adm Bundle Protocol Versio	n-iana-00 n 7 Administrative Reco	ord Types Re	gistry		5 pages 2022	-11-07	I-D Exists WG Document
draft-ietf-dtn-dtnma-03 DTN Management Arch	itecture				52 pages 2022	2-10-24	I-D Exists WG Document
draft-ietf-dtn-ipn-update Update to the ipn URI s	00 cheme				22 pages 2022	2-11-07	I-D Exists WG Document
Expired Internet-Drafts	(2 hits)						
draft-ietf-dtn-bibect-03 Bundle-in-Bundle Enca	osulation				14 pages 2020	0-02-18	Expired WG Document : Proposed Standard Jul 2023

About dtn

"This list is for discussions related to the formation of a Delay Tolerant Networking (DTN) working group. The RTF DTNRG research group has worked on the particular protocols and this new activity is targeted towards determining if there is interest in standardizing any output from the DTNRG or other sources."

To see the collection of prior postings to the list, visit the dtn Archives

Using dtn

To post a message to all the list members, send email to <u>dm@ietf.org</u>. You can subscribe to the list, or change your existing subscription, in the sections belo

Subscribing to dtn

Subscribe to dtn by filling out the following form. You will be sent email requesting confirmation, to prevent others from gratuitously subscribing you. This

Your email address: Your name (optional):

IETF 116 Yokohama>

IETF 116 starts Saturday 25 March and runs through Friday afternoon, 31 March.

Yokohama, Japan

IETF Standards

APL is authoring networking standards and infusing them into devices

Internet Engineering Task Force (IETF)	S. Burleigh
Request for Comments: 9171	IPNGROUP
Category: Standards Track	K. Fall
ISSN: 2070-1721	Roland Computing Services
	E. Birrane, III
	APL, Johns Hopkins University
	January 2022
Bundle Protocol Ve	rsion 7

Abstract

This document presents a specification for the Bundle Protocol, adapted from the experimental Bundle Protocol specification developed by the Delay-Tolerant Networking Research Group of the Internet Research Task Force and documented in RFC 5050.

Spotlight Technology: BPv7 (RFC9171)

• What is BPv7?

- A Transport Protocol for the UN
- Three main features
 - Dynamic extension block mechanism
 - Standardized store/forward
 - More flexible naming scheme

• Benefits

- Persistent node storage
 - To support TVR
- Custodial Transfer
 - Do not start over from the beginning
- Dynamic Annotation
 - In-band security and policy
- Efficient Data Transmission
 - Less control traffic
 - Data aggregation
 - Data abstraction
 - BP over over LTP, TCP, UDP, QUIC, IP, etc...

Spotlight Technology: BPSec (RFC9172)

- What is BPSec?
 - Security extensions for BPv7
 - Block-by-block security
 - Not whole-PDU security

• Benefits

- Multiple annotations in a "bundle" may be secured separately.
 - Encrypt a payload
 - Sign a header
- Allows secured block manipulation
 - Adding a secured block to a bundle at a waypoint.
 - Building overlapping security tunnels.
- Possibly useful for data aggregation
 - Aggregate data flows into BP extension blocks
 - Secure blocks differently
 - Different cipher suites, keys
 - Provides aggregation plus per-flow security.
- Provides security-at-rest
 - When bundles are in store/forward state

Other IETF Work

Time-Variant Routing

- How to create new working groups
 - (Often) Birds of a Feather (BOF) Meetings
 - Document problems to be solved.
 - Gauge community expertise and interest.
- IETF 115 BOF
 - Time-Variant Routing (TVR)
 - 135 attendees. ~70 for (~5 against) creating a new working group.
 - Recording:
 - https://www.youtube.com/watch?v=uc4pwwj6bR0
- Standardize ways to account for known link changes in a network
 - When links come and go.
 - Important consideration for interplanetary spacecraft.
 - Also important for terrestrial use cases
 - Eco-computing. Extending sensor life. Lower utility costs.

Spotlight Technology: CGR/SABR

• What is CGR/SABR?

- Contact Graph Routing (CGR)
- SABR (Schedule-Aware Bundle Routing)
- Break routing into 3 phases
 - Planning
 - Routing
 - Forwarding

• Benefits

- Allows topology data from multiple sources
 - Authoritative: Confirmed pass in 5 minutes
 - Predictive: Expect a contact around now
 - Opportunistic: An unexpected active link
- Prepare for a pass in advance
 - Even when negotiating passes machine-tomachine.

Fraire, J. A., De Jonckere, O., & Burleigh, S. C. (2021). "Routing in the Space Internet: A Contact Graph Routing Tutorial." *Journal of Network and Computer Applications* 174: 102884.

Sender	Recvr	From	Until	Range (light seconds)
Α	В	1000	1100	1
Α	С	1100	1200	30
В	D	1400	1500	120
С	D	1500	1600	90

Figure 3-3: Contact Plan Example: Range Intervals

Figure 3-4: Node A's Contact Graph for Node D, Given This Contact Plan

IETF Brief History of DTN

https://youtu.be/xSDxJGdjw98?t=889

Animations Side Show Raview View Addrins Help

APL,

 \bigcirc

JOHNS HOPKINS

DEFENCE & SPACE

AIRBUS

PLIED PHYSICS LABORATORY

IETF110 TSVAREA

Design

to Callagoat

New Reuse

6161

1000

The Delay-Disruption Tolerant Working Group (DTNWG)

A brief history and overview of DTN and the Bundle Protocol (BPv7)

Print

L. Replace

& Select +

0 🔁

Dictate Design

Edward J. Birrane, Ph.D. Johns Hopkins University, Applied Physics Laboratory (JHU/APL) Edward.Birrane@jhuapl.edu

Rick Taylor Airbus <u>Defence</u> & Space APL) Rick.taylor@airbus.com IETF 110 Online hosted by

IPNSIG Academy

Standardization of DTN in the IETF

https://isoc.live/16141/

IPNSIG Academy - Program for 2022:

- 1. Yosuke Kaneko
- 2. Vinton G. Cerf
- 3. Scott Burleigh
- 4. Oscar Garcia
- 5. Lara Suzuki
- 6. Dave Israel
- 7. David Gomez Otero
- 8. Ed Birrane
- 9. Keith Scott
- 10. Laura DeNardis
- 11. Scott Pace
- 12. "IPNSIG Workshop"

DTN Overview SSI Architecture study **DTN Projects Work DTN live demonstration** NASA Luna Net Overview ESA Moonlight Overview **IETF standardization efforts CCSDS** standardization efforts Internet Governance issues Space Policy, perspective on IPN governance Architecture and Governance of IPN

100+ years vision

