Lunar Regolith Simulants
2021 APL Assessment

EE Monthly Meeting (May 2022)

Karen R. Stockstill-Cahill and the
JHU-APL LSII Lunar Regolith Simulants Team
Lunar Regolith

• Unconsolidated material covering the lunar surface
 - Mostly a fine, gray “soil”
 - Breccia and rock fragments
 - Agglutinates
 - Pyroclastic materials (volcanic glass)

• Relevance (It’s EVERYWHERE!)
 - ISRU (volatiles, other materials)
 - Excavation and Construction (building materials, excavation processes)
 - Extreme Access (“bulk transport of lunar regolith”)
 - Extreme Environments (“endogenic factor”)

19 May 2022

NASA photo AS11-40-5877
From Lunar Sourcebook Ch. 7, Fig. 7.2
Lunar Regolith Facts

- Regolith Properties (ala Roy Christoffersen)
 - Composition - Underlying rock
 - Basalt (Fe-rich)
 - Anorthosite (Ca-rich Anorthite)
Lunar Regolith Facts

- Regolith Properties (ala Roy Christoffersen)
 - Composition - Underlying rock
 - Basalt
 - Anorthosite

- Grain size & shape
 - ~50% <31 um

From Lunar Sourcebook Ch. 7, Fig. 7.9

Liu et al. (2008) Fig. 1
Lunar Regolith Facts

• Regolith Properties (ala Roy Christoffersen)
 - Composition - Underlying rock
 ▪ Basalt
 ▪ Anorthosite

• Grain size & shape
 - ~50% <31 um

• Unique components
 - Agglutinates
 - Nanophase Fe metal (npFe0)
 - Amorphous mineral rims (especially Plagioclase)
Lunar Regolith Simulants

• An approximation of Lunar Regolith
 - Composed of Terrestrial Rocks
 ▪ Compositional differences
 o Terr. Plag. is more Na-rich
 o Terr. Basalt may not be as Fe-rich
 ▪ Exposed to water at the surface
 o Weathered surfaces, oxidized
 - Missing unique components
 ▪ No Agglutinates
 ▪ No nanophase Fe0 metal
 ▪ Mineral rims tend to be crystalline
 - We do have similar rock types
 ▪ Breccia and rock fragments
 ▪ Pyroclastic materials (volcanic glass)
Highland Simulants: 3 Grain Sizes

Highland Pseudo-agglutinate

Outward Technologies
Highland Agglutinate Simulant LHA-1

Exolith LHS-1
75-125 μm
125-250 μm
>500 μm

1 mm 1 mm 2 mm

Off Planet Research OPRH3N
75-125 μm
125-250 μm
>500 μm

1 mm 1 mm 2 mm

CSM-LHT-1
75-125 μm
125-250 μm
>500 μm

1 mm 1 mm 2 mm

(farside)
Mare Simulants: 3 Grain Sizes

Mare Pseudo-agglutinate

Outward Technologies

Mare Agglutinate Simulant LMA-1

Exolith LMS-1

75-125 µm

125-250 µm

>500 µm

1 mm

2 mm

Off Planet Research OPRL2N

75-125 µm

125-250 µm

>500 µm

1 mm

2 mm

CSM-LMT-1

75-125 µm

125-250 µm

>500 µm

1 mm

2 mm
Particle Size and Shape

• Particle size bins of 3 μm for all samples (i.e., 0-3 μm, 3-6 μm, etc.)

• Particle size distribution (PSD) results are D(10), D(50), and D(90)
 - e.g., D(50) = 75 μm indicates that 50% of the particles are <75 μm in diameter
 - Should be equivalent to weight percent derived from sieve analysis

• Camsizer system also reports several shape parameters for each bin size, including
 - Aspect ratio (i.e., AR = b/a; perfect sphere = 1)
 - Sphericity (i.e., perfect sphere = 1; aka complexity)

Figure after Liu et al. (2008)
Particle Shape: Aspect Ratio

• Simulant aspect ratios are higher (more rounded) than Apollo regolith
Particle Size: Median vs. Mode

- Simulant D(50) values overlap with lunar regolith median particle size

*Mean value, no medians reported for Apollo 16 or 17
Particle Size: Distribution (PSD)

- PSD for simulants plot within one standard deviation of Apollo regolith PSD average, although simulant PSD have steeper slope
Composition

Bulk Chemistry (XRF)
- Portable Thermo Scientific Niton XL3t 980 analyzer
 - Repeated analyses on 5 splits of bulk material
 - Detection limits (Mg, Na)

Minerology (XRD)
- Panalytical Empyrean diffraction cabinet using Reference Intensity Ratio method
 - Incident x-rays are diffracted by crystalline material
 - For samples with multiple phases present, provides semi-quantitative abundances
Composition: Bulk Chemistry (Highland) - XRF

Highlands Regolith Compositions

(SEM of 125-250 µm split)
Composition: Bulk Chemistry (Mare) - XRF

(SEM of 125-250 μm split)
Composition: Mineralogy (Highland Simulants) - XRD

<table>
<thead>
<tr>
<th>Company</th>
<th>Simulant</th>
<th>Type</th>
<th>Plagioclase</th>
<th>Olivine</th>
<th>Pyroxene</th>
<th>Groutite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exolith</td>
<td>LHS-1</td>
<td>Highland</td>
<td>87</td>
<td>6.5</td>
<td>-</td>
<td>6.5</td>
</tr>
<tr>
<td>Off Planet Research</td>
<td>OPRH3N</td>
<td>Highland</td>
<td>100</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO School of Mines</td>
<td>LHT-1</td>
<td>Highland</td>
<td>100</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Outward Technology</td>
<td>LHA-1</td>
<td>HL aggl</td>
<td>100</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Phases:
- **Plagioclase:** Labradolite (as anorthite).
- Glassy mafic rocks/minerals are not identified by XRD.
Composition: Mineralogy (Highland Simulants) - XRD

SEM Maps of 125-250 µm split*

- **R** = Fe
- **G** = Si
- **B** = Al

- Plagioclase = blues
- Ol/Pyx = green/orange

Apollo 16 Highland Regolith

Exolith LHS-1

Off Planet Research OPRH3N

CSM LHT-1
Composition: Mineralogy (Mare Simulants) - XRD

<table>
<thead>
<tr>
<th>Company</th>
<th>Exolith</th>
<th>Off Planet Research</th>
<th>CO School of Mines</th>
<th>Outward Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulant</td>
<td>LMS-1</td>
<td>OPRL2N</td>
<td>LMT-1</td>
<td>LMA-1</td>
</tr>
<tr>
<td>Type</td>
<td>Mare</td>
<td>Mare</td>
<td>Mare</td>
<td>Mare aggl</td>
</tr>
<tr>
<td>Plagioclase</td>
<td>100</td>
<td>100</td>
<td>77(^1)</td>
<td>76(^1)</td>
</tr>
<tr>
<td>Olivine</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pyroxene</td>
<td>-</td>
<td>-</td>
<td>23</td>
<td>24</td>
</tr>
<tr>
<td>Groutite</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

\(^1\)Phase ID = Labradorite, (all other identified as anorthite).

Glassy mafic rocks/minerals are not identified by XRD.
SEM Maps of 125-250 µm split*

R = Fe G = Si B = Al

- Plagioclase = blues
- Ol/Pyx = green/orange

Exolith LMS-1

Off Planet Research OPRL2N

CSM LMT-1
Pseudo-Agglutinates by Outward Technologies

- **2021** OT Highland Pseudo-Agglutinate Simulant
Comparison: Lunar Highland Pseudo-Agglutinate

Apollo Regolith

a) Apollo 67461 Agglutinates

Outward Technologies Pseudo-Agglutinate

b) Outward Technologies LHA-1

1 mm

1 mm
Pseudo-Agglutinates by Outward Technologies

- **2021** OT Mare Pseudo-Agglutinate Simulant
Comparison: Lunar Mare Pseudo-Agglutinate

Apollo Regolith

Outward Technologies Pseudo-Agglutinate

a) Apollo 15041 Agglutinates

b) Outward Technologies LMA-1
2021 Assessment Conclusions

• The evaluation and utility of a simulant is specific to its application
 - e.g., Melting/microwaving regolith requires high compositional fidelity
 - e.g., Material durability studies would require high fidelity in particle shape & size

• Regolith simulants and even lunar regolith do not necessarily behave in the same way on Earth as they would on the Moon
 - Solar wind implants volatiles on lunar surface (reactivity, cohesive forces, etc.)
 - Nanophase Fe0 results in magnetic properties in lunar regolith
 - Lower confining stresses at lunar surface

• Lunar regolith simulants from current simulant providers could meet the needs of most users
 - You can add components – including synthetic materials – to increase fidelity in appropriate areas

• For advanced (high TRL) testing related to ISRU needs, it may be wise to compare results using a simulant with and without pseudo-agglutinates, and potentially even a lunar soil (in the lab or on the lunar surface).
Downloadable Assessment doc

• Confluence: https://lsic-wiki.jhuapl.edu
 - Lunar Simulants Working Group
 - LSWG Resource Library -> Recent Simulant Assessments
 ▪ Scroll to the bottom of the Page

• Public webpage: https://lsic.jhuapl.edu
 - Resources -> Lunar Simulants
 - Click on Assessments and Databases tab
 ▪ Click on the 2021 Lunar Simulant Assessment