The Lunar Nobility Vehicle (LNV)

by

LOCKHEED MARTIN

LOCKHEED MARTIN

Defining a New Era of Space Mobility

Unlocking the Lunar Surface for Science & Industry

2

Space Heritage

Lockheed is responsible for engineering many of humanity's boldest and most challenging space missions

Experienced Team

Established Facilities

Flight-Proven Subsystems

OSIRIS-REx

InSight Mars Lander

The Next Generation Of Lunar Rover

Commercial Lunar Mobility & Mission Support Services

Long Range, High Data Rate, Multi-Mission Support

Priced to Expand Access and Enable Impactful New Missions

Advance Space Science Unlock the Lunar Economy Alleviate Customer Infrastructure Needs

Explore New Possibilities

Unique Capability

Far Side and Permanently Shadowed Operations

Over 1,000 km Range per Lunar Day

1,600 kg+ Surface Payload Capacity

Robotic Arm with 70 kg+ Capacity and 2.5 m Reach

50 Mbps Data Downlink Rate to Earth

Robust Native Sensor Package

Launching to the Moon in 2027

Explore the Moon

360° Illumination

Stills, Video, and Tessellated 3D Models

VIS/NIR HD & 4K Cameras Radar & Neutron LiDAR Spectrometer

More than 10 km² of Mapping Per Lunar Day

Spudis

Survive The Darkness

Vehicle Designed to Survive the Full Lunar Night and Support Payloads Throughout

Continuous Lunar Night Payload Power Availability for Year-Long Mission Operations

> Muti-Day Operational Capacity in Permanently Shadowed Regions

Lunar Night

Lunar Day

40 80 120 160 200 240 280 320 360 400 к -233 -193 -153 -113 -73 -33 7 47 87 128 с Surface Temperature Data From LRO & Diviner

7

Meaningful Data Collection & Transmission

LOCKHEED MARTIN

Simplify Development

Standardized, Multipurpose Payload Support Configuration

Expandable Building-Block Model for Large Payloads

LM-Provided Interface Plates to Streamline Manufacturing

Payload Bed and Side-Slung Slots Available

Customizable for Specific Needs

LOCKHEED MARTIN

Single-Slot Universal Payload Adapter System (UPAS)

Standard Specs:

Land 35 kg Mass Support 70 kg+ Mass on Lunar Surface

Wi-Fi & Ethernet

Vehicle Data Access

28 & 120 VDC Power

Survive the Night Support Robotic Arm Interface

300 mm

500 mm

300 mm

9

Imagine New Possibilities

LOCKHEED MARTIN

Investigate, Explore and Experiment

- Multispectral Surface Mapping
- Sample Analysis
- Close-Proximity Asset Imaging
- Long-Term Lunar Biology
- Deep Space Observation
- Mobile Space Situational Awareness
- Low-Gravity Manufacturing
- Lunar Geology & Planetary Science
- > Survivability Testbed
- Cinematic Event Capture
- Lunar Gravity & Magnetism
- Permanent Habitat Scouting & Staging

Prospect, Mine, and Survey

- Mobile Power & Comms Network Services
- Surface Spectrometry
- Core Sampling
- Regolith Drilling
- Load Carrying
- High Fidelity Resource Ground Truth
- Resource Extraction & Processing
- Shadowed Region & Lava Tube Exploration
- Refueling Demonstrations
- Volatiles & Rare Resource Sensing

Transport and Deliver

- Asset Relocation
- Sample Collection
- Crew Transportation
- > 3rd Party Lander Unloading
- Cargo Hauling Heavy Mass Lunar Surface Landing
- Sample Flagging for Crew
- Microrover Positioning & Sustained Support
- Critical Infrastructure Emplacement
- Geophysical Instrumentation Delivery

Construct, Service, and Assemble

- Landing Pad Preparation
- Asset Rescue & Maintenance
- Landing Zone Mapping
- Power, Transportation, PNT, and Comms Network
 Development
- Habitat Construction
- > Additive Manufacturing
- Recycling & Asset Reconstitution

11

Mission: Lava Tube Explorer

- Mission Duration:
 - ➢ 300 Hours
- Objectives:
 - Deliver Lava Tube Rover to an Opening in the southern Mare Australe
 - Provide Data & Power to Lava Tube Rover
 - Transmit 500 GB of Lava Tube Mapping & Geology Data
- Distance Traveled:
 - ➤ 5 km

Mission Key

Lava Tube Rover

Mission: Lunar South Pole

- Mission Duration:
 - ➤ 180 Hours
- Objectives:
 - Map Shackleton Crater Rim
 - Deliver Three Comms Payloads
 - Passive Magnetotelluric Sounding
- Distance Traveled:
 - ➢ 500 km

Mission Key

End Point

Mission: Lander Staging & Inspection

- Mission Duration:
 - ➤ Two Lunar Days
- Objectives:
 - Scout Landing Zone for Hazards
 - Prepare Landing Zone Terrain
 - Provide Lander with PNT Beacon
 - Film Lander Descent with 4K Camera
 - Close-Proximity Post-Descent Lander Inspection
 - Offload Lander Payloads into LMV Payload Bed
 - Depart Landing Zone
- Distance Traveled:
 - ➢ 50 km

Basic Services

2027.

Payloads that collect data independent of the LMV's primary tasked missions. Transportation & Active Payloads

Payload missions that require specific tasking including asset delivery, surface interactions, robotic arm operations, or a specific location.

Mapping and imaging missions using native LMV sensors including cameras, LiDAR, radar, and neutron spectrometer.

