Chemically modified reduced graphene oxide (CMrGO)-based Electrodynamic Dust Shield (EDS) devices for lunar dust mitigation

Micah J. Schaible, Kristoffer G. Sjolund, Emily A. Ryan, Meisha L. Shofner, John R. Reynolds, Julie S. Linsey, and Thomas M. Orlando

Georgia Institute of Technology
SSERVI REVEALS Team
Highlights:

- Spray-coated EDS systems were produced using a conductive nanocomposite material (CMrGO).
- Both 2-phase and 3-phase device configurations efficiently removed >80% of deposited dust.
- The 2-phase devices were cleaned at ~50% lower voltage when illuminated with UV light.
- Using a dielectric cap eliminates electrical discharges on the surface.

EDS Basics

- The 2-phase devices use 10 Hz square waves 180 out of phase
 - A standing wave potential is generated above the device surface for 2-phase
- 3-phase devices use a Moesner and Higuchi waveform
 - A traveling wave is formed above 3-phase devices
- $H \times W = 2 \times 1.5 \text{ in (2p)}$ and $3 \times 2 \text{ in (3p)}$

Electrode trace thickness $t = 0.5 \text{ mm}$

Inter-electrode spacings $d = 2 \text{ mm}$

Device Fabrication

Device Fabrication

A Zylon® fabric embedded in thermoplastic polysulfone

B CMrGO device fabricated on 3mil HDPE film

C Zylon® fabric embedded in a film of HDPE with a CMrGO infiltrated coating

Simulants are compositionally and physically like lunar regolith. Size and shape distributions for LHS-1 from optical microscopy images.

The μ and σ correspond to the mean and standard deviation of the fitted distribution.
Rough 2-phase devices

1st dust deposition

4th dust deposition
Bare 2-phase devices

- Dust is efficiently and repeatably removed from 2-phase CMrGO EDS devices
 - A minimum voltage of 1000 V is required for the rough condition
 - A minimum of 2000 V is required for the smooth
- Discharges/dielectric breakdown occurs for several seconds after EDS activation
 - Persistent hot-spots lead to trace failure
 - Smooth devices have fewer discharges and less degradation
 - But worse performance

Smooth 2-phase devices

1st dust deposition

3rd dust deposition
Rough 2-phase devices + UV

1st dust deposition

6th dust deposition
Bare 2-phase devices + UV

- Dust cleared at 800 V, for the rough configuration
- Cleared at 1000V for the smooth configuration
- The dust surface was UV illuminated at 5 sec intervals to avoid heating
- UV illumination caused the devices to degrade more rapidly

Bare 3-phase devices

Larger applied voltages were required to remove grains from both rough (1500 V) and smooth (3000 V) devices.

Materials Effects

Surface Durability

Dust Deposition System

- Vibrationally driven dust hopper to deposit dust onto EDS surfaces under high vacuum conditions
- Based on a home-made voice coil and permanent magnets
- Vibrational amplitude can be controlled to vary the rate of dust deposition onto the surface below
Dust Deposition System

- Activate 2-phase EDS (1500 V)
- Initiate dust deposition with EDS activated
- After ~5 min, EDS is deactivated while dust is still being deposited
- Dust accumulates on deactivated surface for several minutes
- Finally, EDS is reactivated to clear off accumulated dust
Moving Forward

- Continue testing EDS devices by dropping charged dust grains onto an activated surface and with EDS devices in flexure.
- Explore alternative capping materials
 - nanostructured materials to reduce surface adhesion
 - improve the cleaning performance of devices for the smallest size grain fractions
- Incorporate with additional mitigation strategies such as vibrational tribocharging, and electron bombardment
Supplemental Slides
Grain Size After EDS removal

- Device – 3 phase smooth device after use, no wiping/washing/dust disturbance (outside of covered transport to microscope)
- Images - taken at 5x and 50x to show overall surface variability and measure particle size
- *Note: Only in focus particles were measured for analysis

Total survey: 92 particles, 4 regions
4.02 μm average diameter
(min: 1.25μm, max: 9.86μm)
Rough 2-phase devices + vibration