Tools and Processes for Robotic Outfitting of Buildings
Terrestrial And Space Construction Examples
Overview

Terrestrial Vs Extraterrestrial Construction

Multi System Assemblies

Traditional Construction

Systems Integration

NREL ICI – Robotics for Systems Integration
Terrestrial Vs Extraterrestrial Construction

Building on Earth
a system of systems that are functional
-structurally stable
-energy efficient
-thermally efficient
-habitable**
-rapidly constructable

Building in orbital space
a system of systems that are functional
-structurally stable
-energy efficient
-thermally efficient
-habitable**
-easily deployable (or assembly)
-remotely controllable

Building on extra-terrestrial bodies
a system of systems that are functional
-structurally stable
-energy efficient
-thermally efficient
-habitable**
-remotely constructable
-easily deployable
-remotely controllable
Multi System Assemblies

Source: https://www.autogreeknews.gr/antallaktika-autokinwn/2655-metageirisomena-antallaktika-autokinwn-lagios-k-gewrgios
Multi System Assemblies

Source: https://imageio.forbes.com/specials-images/imageserve/6123fd7c33703c8ccc0e9ba6/Automotive-production-line–Welding-car-body–Modern-car-Assembly-plant/960x0.jpg?format=jpg&width=960
Multi System Assemblies

STRUCTURES
1. Fuselage
2. Cockpit

AVIONICS
3. Winglet
4. Flaps
5. Slats
6. Spoiler
7. Aileron
8. Stabilizers

MECHANICAL
10. Landing Gear
11. Aileron Control System
12. Spoiler Control System
13. Wheels
14. Wheels

CONTROL SYSTEMS
10. Flap Control System
11. Aileron Control System
12. Spoiler Control System

ENGINES
9. Turbine
Multi System Assemblies

MECHANICAL
- 12. Boiler Plant
- 11. Chiller Plant
- 10. Air valves
- 9. Ducts

ELECTRICAL
- 16. Main board
- 15. Power supply
- 14. Conduits
- 13. Artificial Lighting

PLUMBING
- 21. Water storage tank
- 20. Water supply pipes
- 19. Grey water return pipes
- 17. Drainpipes

STRUCTURAL
- 8. Footing
- 7. Foundation
- 6. Slabs
- 5. Beams
- 4. Columns

ARCHITECTURAL
- 3. Windows
- 2. Interior walls
- 1. Envelope assembly

~1000+ Components
Multi System Assemblies

~10000+ Components
Trends in Robotic Construction – Timber Construction

Source: ETH, Zurich
Trends in Robotic Construction – Wall Assembly

Source: AIST, Japan
Trends in Robotic Construction – Brick Laying

Source: Semi Automated Mason (SAM)
Trends in Robotic Construction – Brick Laying

Source: Semi Automated Mason (SAM)
Trends in Robotic Construction – Wall Finishing

Source: Canvas Drywall Robot
NREL ICI Focus Areas – Robotics for Systems Integration in Buildings

- Industrial Robotic Arms
- Rovers
- Quadrupedals
- Drones
NREL ICI Focus Areas – Robotics for Systems Integration in Buildings

- Robotic Outfitting
- Virtual Simulation
- Semi-Autonomous Robotics
- Computer Vision Based Sensing
- Autonomous Robotics
- Digital Twin Visualization
Past Projects from Penn State – NASA 3D Printed Mars Habitat Challenge

PRINTING PROCESS: WALLS
4D Simulations of robotic construction is computational graphics intensive
Past Projects from Penn State – NASA 3D Printed Mars Habitat Challenge

Detailed 4D Simulation

Robotic Box Collision metamodel (faster computation)

Metamodels for faster constructability analysis (Toolpath Clash Detection)
NREL ICI Focus Areas – Additive Concrete Construction + Energy Systems
NREL ICI – Robotic Programming for Environmental Control Systems Integration
Thank you!