

Lunar Geotechnical Site Characterization and Preparation for Exploration and Infrastructure Development

Jared Long-Fox

University of Central Florida – Department of Physics

LSIC E&C Monthly Meeting – July 26, 2023

Introduction

- Sustainable lunar permanence relies on:
 - Safe and efficient interactions with planetary surfaces (landing, roving, infrastructure development)
 - Utilization of local resources
- Regolith will be the primary feedstock for infrastructure development and *in situ* resource utilization (ISRU)
 - Site-specific physical and chemical properties that are very different from Earth
 - Extreme environment reduced gravity, no atmosphere (and related effects), and limited energy resources

Image credit: NASA

The Need for Site Characterization and Preparation

- Terrestrial construction requires site characterization and specific preparation methods to bring the site into acceptable specs → need same for the Moon
 - Need to define "acceptable" for the lunar case
- Need to characterize *in situ* physical properties
 - Unlike what we deal with on Earth
 - Extreme environment
 - Site specific variations
- Should use simple, standard exploration tools and tests whenever possible
 - Borrow from terrestrial studies as able
 - Minimize mass \rightarrow cheaper and more efficient launches and operations

Experimental Hardware

- COLDArm testing campaign at NASA KSC Swamp Works
 - Ground interaction data being collected using COLDArm geotechnical scoop
 - Force-torque sensor on UR10 arm
 - LHS-1B simulant

UCF

Jet Propulsion Laboratory California Institute of Technology

Site Characterization Experiments

- Angle of Repose
 - Provides a first-order look at the strength of the material you are working with
- Pressure-Sinkage
 - Provides information on bearing capacity and trafficability
 - Bernstein (1913), Bekker (1969), and Reece (1965)
- Shear
 - A fundamental quantity to characterize (e.g., Mohr-Coulomb relationship) shear strength plays a part in nearly all other mechanical properties of regolith (including AoR)
- Excavation
 - Convolution of horizontal and vertical forces acting on regolith
 - Able to learn physical properties based on forces observed during excavation (more on this soon!)
- Materials

UCF

Need high-fidelity lunar regolith simulants

Site Characterization: Angle of Repose

- Gives insights into the high-level physical properties of regolith
 - Useful for initial explorations and characterizations
 - Not definitive enough for in-depth quantitative analyses of regolith mechanics
- With sufficient pre-flight testing, can inform on:
 - Volatile content
 - PSD

UCF

Composition

 Need sample piles above a given mass/volume because angle of repose is sample size-dependent

Site Characterization: Pressure-Sinkage

- Pressure-sinkage relationships inform on bearing capacity and tractive capabilities of the regolith
 - The ability to predict rover performance and safety factors in infrastructure development as a function of regolith properties is key
- Provides information on:
 - Relative compaction of local regolith for exploration and infrastructure development safety
 - Moisture and volatile content [Long-Fox et al., 2022]
- Models of pressure-sinkage

- Bernstein (1913): $p = kz^n$
- Bekker (1969): $p = \left(\frac{k_c}{b} + k_{\phi}\right) z^n$
- Reece (1965): $p = \left(ck_c + \gamma bk_{\phi}\right) \left(\frac{z}{b}\right)^n$

Site Characterization: Shear

- Shear strength is a fundamental property that determines bulk regolith behavior
 - Affected by relative state of compaction
 - Volatile content is expected to cause variations in shear strength
 - Sensitive to PSD and mineralogy
- Provides information on:
 - Traction

- Load bearing capabilities
- Material handling

- Mohr-Coulomb model of shear strength
 - $\tau_s = \sigma_n \tan(\phi) + c$

Site Characterization: Excavation

- Excavation is a convolution of horizontal and vertical forces acting on the regolith
 - Shear

- Compression
- Forces required for excavation are a function of many material properties (e.g., density, porosity, cohesion, frictional constants,...)
- Desirable to be able to estimate material properties during excavation
 - Will allow adaption to changing regolith conditions

- COLDArm excavation data being modeled with simple analytical models (2D Reece's Fundamental Equation of Earthmoving – Reece, 1964)
- Estimating relevant properties of materials being excavated:
 - Cohesion (c)

UCF

- Angle of internal friction (φ)
- Shear plane failure angle (β)
- Angle of external friction (δ)
- Markov Chain Monte Carlo (MCMC) for parameter estimations and Ftests for 2σ confidence intervals

$$F = w \left[c dN_c + \gamma d^2 N_\gamma + Q dN_q \right]$$

 $$w$ is scoop width d is cutting depth N_c, N_{γ}, N_q are dimensionless "N factors" Q is surcharge load$

Modified from McKyes (1985)

- COLDArm excavation testing starting late Summer 2023
- Recovery Test

- Generate synthetic data using Reece's Fundamental Equation of Earthmoving with known input parameters (10% Gaussian noise added)
- Run MCMC model to see if algorithm can predict synthetic data
 - 10 adaptations of 1,000 samples each to "home in" on best-fit set of parameter values
- Reece's FEE provides a suitable first-order set of parameter estimations

Parameter	Input	Predicted (±2σ)	Error (%)
c (Pa)	311.00	$335.14 \pm \frac{111.80}{125.01}$	7.76
φ (°)	35.00	$37.55 \pm \frac{11.88}{13.75}$	7.29
β (°)	10.00	$11.92 \pm \frac{11.88}{5.38}$	19.20
δ (°)	25.00	$26.27 \pm \frac{16.24}{14.02}$	5.08
N_{c}	4.74	$4.45\pm\frac{1.08}{0.80}$	6.12
N_{γ}	3.34	$3.22 \pm \frac{0.98}{0.89}$	3.59
N_Q	6.67	$6.44 \pm \frac{1.96}{1.77}$	3.45

	Input	Predicted $(\pm 2\sigma)$	Error (%)		▲ Sample c	Sample δ
c (Pa)	311.00	$335.14 \pm \frac{111.80}{125.01}$	7.76	10-1-	95% Conf.	10 ⁻¹ 95% Conf.
φ (°)	35.00	$37.55 \pm \frac{11.88}{13.75}$	7.29	10 ⁻⁴ -		10 ⁻⁴ -
β (°)	10.00	$11.92 \pm \frac{11.88}{5.38}$	19.20	nlue value		⁰ 10 ^{−7} -
δ (°)	25.00	$26.27 \pm \frac{16.24}{14.02}$	5.08	¹⁰⁻¹⁰ -		² , 10 ⁻¹⁰ -
N_{c}	4.74	$4.45\pm\frac{1.08}{0.80}$	6.12	10 ⁻¹³ -		10 ⁻¹³ -
N_{γ}	3.34	$3.22 \pm \frac{0.98}{0.89}$	3.59	10 ⁻¹⁶		10 ⁻¹⁶
N_Q	6.67	$6.44 \pm \frac{1.96}{1.77}$	3.45		200 300 400 Cohesion (c. Pa)	10 20 30 40 Angle of External Friction (δ. °)
0						
	Syntheti Predictio 95% Cor	ic Data on nf.		10^{-1}	 Sample Φ 95% Conf. 	10^{-1} Sample β 95% Conf.
$\begin{bmatrix} 10 \\ 8 \\ - \\ 6 \\ - \\ \end{bmatrix} \xrightarrow{\bullet} \begin{bmatrix} \bullet \\ 5 \\ - \\ 0 \\ - \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	Syntheti Predictio 95% Coi	ic Data on nf.		10^{-1} - 10^{-4} - 10^{-7}	 Sample φ 95% Conf. 	10^{-1} - Sample β 95% Conf. 10^{-4} - 10 ⁻⁷ - 10 ⁻⁷ -
$\begin{bmatrix} 10 \\ 8 \\ - \\ 6 \\ 4 \\ - \\ 4 \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	Syntheti Predicti 95% Coi	ic Data on nf.	······································	$10^{-1} - 10^{-4} - 10^{-7} - 10^{-7} - 10^{-10} - 10$	 Sample φ 95% Conf. 	10^{-1} - Sample β 95% Conf. 10^{-4} - 10 ⁻⁷ - 10 ⁻¹⁰ - 10
	Synthet: Predicti 95% Cor	ic Data on nf.		$10^{-1} = 10^{-1}$	A Sample Φ 95% Conf.	10^{-1} 10^{-4} 10^{-4} 10^{-7} 10^{-10} 10^{-13}
	Synthet: Prediction 5% Con	ic Data on nf.		10^{-1} 10^{-4} 10^{-7} 10^{-10} 10^{-13} 10^{-16}	A Sample Φ 95% Conf.	10^{-1} 10^{-4} 10^{-4} 10^{-4} 10^{-7} 10^{-10} 10^{-13} 10^{-16} 10^{-16} 10^{-16}

- Analytical models of excavation are overly simplistic
 - Homogeneity of materials
 - Flat free surface

UCF

- Unrealistic tool geometry
- Lack of environmental effects
- Spurious empirical calibration coefficients
- Unable to incorporate force reduction directly into model
- Need realistic models that can incorporate 3D distributions of material properties, uneven topography, and force reduction methods

Modified from McKyes (1985)

To fully describe a quantitative estimate, you need: 1) A measure of central tendency; 2) a sense of uncertainty; 3) rigorous analysis of assumptions and biases

Excavation: The Need for Force Reduction

- Need ways to reduce the reaction force needed for raw material acquisition during excavation due to challenging material properties and environment:
 - High cohesion and dilative nature of regolith
 - Reduced gravity (1/6 g on the Moon)
 - Launch mass budgets
- Experimental work in force reduction is showing good results, but none of these efforts have developed predictive capabilities

UCF

- Vibration [Rezich et al., 2021]
- Percussion [Green et al., 2013]

Image credit: Contour Crafting

Excavation: Numerical Modeling

- Numerical models allow for fewer simplifying assumptions compared to analytical models
 - CAD-based tool geometries allow testing of prototype hardware and allow for better mission planning
 - Arbitrary 3D domain geometries and material property distributions
 - Can prescribe various loadings such as vibration, percussion, and more
 - Multiphysics

UCF

Finite element models (FEMs)

- Continuum-based
- Coupled Eulerian-Lagrangian treats regolith as a highly deformable solid being manipulated by a rigid tool
- Often used in modeling soil-tool and soil-wheel interactions on Earth [Tagar et al., 2015]

Discrete element models (DEMs)

- Discontinuous, independently moving particles
- Represents regolith as individual grains interacting with each other and tools/wheels
- Becoming more common, but granular mechanics is extremely complex and hence difficult to describe computationally.

Excavation: Numerical Modeling

UCF

- FEMs are established, well-understood formulations that have been applied to modeling of terrestrial geological media in multiple fields for many years
- The representation of granular regolith as a solid or fluid-like material is inaccurate, but may capture bulk behavior suitably
 - What are the limitations of this approximation of net mechanical behavior specifically in the lunar case?

From Tagar et al. (2015)

Excavation: Numerical Modeling

- DEMs are computationally complex and the fledgling field of granular mechanics is still ill-resolved compared to the solid and/or fluid-like mechanics of FEMs
 - Difficult to fully capture all the physics [Schmulevich, 2010]
 - Different simulations require different material property calibrations- no reliable methods to determine which
 - Very computationally expensive
 - Do not handle wide PSDs well

- Particle size distribution is the most important aspect of regolith for simulants to replicate [Sibille et al., 2006]
- Planetary regolith generally has PSDs than span 7 or 8 orders of magnitude...

From Coetzee et al. (2017)

Future Work and Products

- Collect COLDArm excavation data (no force reduction)
 - Ingest into analytical models for parameter estimations → first-pass approximations of physical properties during excavation
 - Provides baseline data
- Develop percussive and vibratory excavation testing hardware
 - COLDArm scoop

UCF

- Surveyor replica scoop
- Develop experiment arrays and perform experiments to collect data
 - Compare force reduction methodologies
 - Compare modeling methods (analytical vs. FEM vs. DEM)

Develop and calibrate FEMs and DEMs

- Statistically compare efficiency and accuracy of calibrated model predictions relative to experimental data
- Calibration workflows and calibrated models will be new tools we can use to plan safe and efficient excavation operations planning

References

- 1. Green, A., Zacny, K., Pestana, J., Lieu, D., and Mueller, R. (2013), "Investigating the Effects of Percussion on Excavation Forces", *Journal of Aerospace Engineering* 26(1), p. 87–96.
- Long-Fox, J., Lucas, M. P., Landsman, Z., Millwater, C., Britt, D., and Neal, C. (2022), "Applicability of Simulants in Developing Lunar Systems and Infrastructure: Geotechnical Properties of Lunar Highlands Simulant LHS-1", 18th Biennial ASCE Earth and Space Conference.
- 3. McKyes, E. (1985), "Soil Cutting and Tillage", *Developments in Agricultural Engineering* Vol. 7, Elsevier.
- 4. Rezich, E. T., Schepelmann, A., Gotti, D. J., and Linne, D. L. (2021), "Ultrasonically Assisted Blade Technologies for Lunar Excavation", *17th Biennial ASCE Earth and Space Conference*.
- 5. Shumlevich, I. (2010), "State of the art modeling of soil-tillage interaction using discrete element method", Soil and Tillage Research 111, p. 41–53.
- 6. Sibille, L, Carpenter, P., Schlagheck, R., and French, R.A. (2006). Lunar Regolith Simulant Materials: Recommendations for Standardization, Production, and Usage" *Technical Publication TP2006214605*. NASA.
- 7. Tagar, A. A., Changying, J., Adamowski, J., Malard, J., Qi, C. S., Qishuo, D., and Abbasi, N. A., (2015), "Finite element simulation of soil failure patterns under soil bin and field testing conditions", *Soil & Tillage Research* 145, p. 157–170.

Questions?

jared.long-fox@ucf.edu

