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▪ Sustainable lunar permanence relies on:
▪ Safe and efficient interactions with planetary surfaces (landing, roving, infrastructure 

development)

▪ Utilization of local resources

2

Introduction

▪ Regolith will be the primary 
feedstock for infrastructure 
development and in situ 
resource utilization (ISRU)
▪ Site-specific physical and 

chemical properties that are 
very different from Earth

▪ Extreme environment - 
reduced gravity, no 
atmosphere (and related 
effects), and limited energy 
resources

Image credit: NASA



▪ Terrestrial construction requires site characterization and specific preparation 
methods to bring the site into acceptable specs → need same for the Moon
▪ Need to define “acceptable” for the lunar case

▪ Need to characterize in situ physical properties
▪ Unlike what we deal with on Earth

▪ Extreme environment

▪ Site specific variations

▪ Should use simple, standard exploration tools and tests whenever possible
▪ Borrow from terrestrial studies as able

▪ Minimize mass → cheaper and more efficient launches and operations
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The Need for Site Characterization and Preparation



▪ COLDArm testing campaign at NASA KSC 
Swamp Works
▪ Ground interaction data being collected using 

COLDArm geotechnical scoop
▪ Force-torque sensor on UR10 arm

▪ LHS-1B simulant
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Experimental Hardware



▪ Angle of Repose
▪ Provides a first-order look at the strength of the material you are working with

▪ Pressure-Sinkage
▪ Provides information on bearing capacity and trafficability

▪ Bernstein (1913), Bekker (1969), and Reece (1965)

▪ Shear
▪ A fundamental quantity to characterize (e.g., Mohr-Coulomb relationship) – shear strength 

plays a part in nearly all other mechanical properties of regolith (including AoR)

▪ Excavation
▪ Convolution of horizontal and vertical forces acting on regolith

▪ Able to learn physical properties based on forces observed during excavation (more on this 
soon!)

▪ Materials
▪ Need high-fidelity lunar regolith simulants
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Site Characterization Experiments



▪ Gives insights into the high-level physical properties of 
regolith
▪ Useful for initial explorations and characterizations

▪ Not definitive enough for in-depth quantitative analyses of 
regolith mechanics

▪ With sufficient pre-flight testing, can inform on:
▪ Volatile content

▪ PSD

▪ Composition

▪ Need sample piles above a given mass/volume because 
angle of repose is sample size-dependent 6

Site Characterization: Angle of Repose



▪ Pressure-sinkage relationships inform on bearing 
capacity and tractive capabilities of the regolith
▪ The ability to predict rover performance and safety 

factors in infrastructure development as a function of 
regolith properties is key

▪ Provides information on:
▪ Relative compaction of local regolith for exploration 

and infrastructure development safety
▪ Moisture and volatile content [Long-Fox et al., 2022]

▪ Models of pressure-sinkage
▪ Bernstein (1913): 𝑝 =  𝑘𝑧𝑛

▪ Bekker (1969): 𝑝 =
𝑘𝑐

𝑏
+ 𝑘𝜙 𝑧𝑛

▪ Reece (1965): 𝑝 = 𝑐𝑘𝑐 + 𝛾𝑏𝑘𝜙
𝑧

𝑏

𝑛 7

Site Characterization: Pressure-Sinkage



▪ Shear strength is a fundamental property 
that determines bulk regolith behavior
▪ Affected by relative state of compaction

▪ Volatile content is expected to cause 
variations in shear strength

▪ Sensitive to PSD and mineralogy

▪ Provides information on:
▪ Traction

▪ Load bearing capabilities

▪ Material handling

▪ Mohr-Coulomb model of shear strength
▪ τ𝑠 = σ𝑛 tan 𝜙 + 𝑐
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Site Characterization: Shear



▪ Excavation is a convolution of horizontal 
and vertical forces acting on the regolith
▪ Shear

▪ Compression

▪ Forces required for excavation are a 
function of many material properties (e.g., 
density, porosity, cohesion, frictional 
constants,…)

▪ Desirable to be able to estimate material 
properties during excavation
▪ Will allow adaption to changing regolith 

conditions
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Site Characterization: Excavation



▪ COLDArm excavation data being 
modeled with simple analytical 
models (2D Reece’s Fundamental 
Equation of Earthmoving – Reece, 
1964)

▪ Estimating relevant properties of 
materials being excavated:
▪ Cohesion (c)
▪ Angle of internal friction (φ)
▪ Shear plane failure angle (β)
▪ Angle of external friction (δ)

▪ Markov Chain Monte Carlo (MCMC) 
for parameter estimations and F-
tests for 2σ confidence intervals
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Excavation: Analytical Modeling

𝐹 = 𝑤 𝑐𝑑𝑁𝑐 + γ𝑑2𝑁γ + 𝑄𝑑𝑁𝑞 

w is scoop width
𝑑 is cutting depth

𝑁𝑐, 𝑁γ, 𝑁𝑞  are dimensionless “N factors”

𝑄 is surcharge load

Modified from McKyes (1985) 



▪ COLDArm excavation testing starting 
late Summer 2023

▪ Recovery Test
▪ Generate synthetic data using Reece’s 

Fundamental Equation of Earthmoving with 
known input parameters (10% Gaussian 
noise added)

▪ Run MCMC model to see if algorithm can 
predict synthetic data
▪ 10 adaptations of 1,000 samples each to 

“home in” on best-fit set of parameter 
values

▪ Reece’s FEE provides a suitable first-order 
set of parameter estimations
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Excavation: Analytical Modeling
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Excavation: Analytical Modeling
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▪ Analytical models of excavation are overly simplistic
▪ Homogeneity of materials

▪ Flat free surface

▪ Unrealistic tool geometry

▪ Lack of environmental effects

▪ Spurious empirical calibration coefficients

▪ Unable to incorporate force reduction directly into model

▪ Need realistic models that can incorporate 3D 
distributions of material properties, uneven 
topography, and force reduction methods
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Excavation: Analytical Modeling

To fully describe a quantitative estimate, you need: 1) A measure of central tendency;  
2) a sense of uncertainty;  3) rigorous analysis of assumptions and biases

Modified from McKyes (1985) 



▪ Need ways to reduce the reaction force needed for raw material acquisition 
during excavation due to challenging material properties and environment:
▪ High cohesion and dilative nature of regolith

▪ Reduced gravity (1/6 g on the Moon)

▪ Launch mass budgets
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Excavation: The Need for Force Reduction

▪ Experimental work in force 
reduction is showing good 
results, but none of these 
efforts have developed 
predictive capabilities
▪ Vibration [Rezich et al., 2021]

▪ Percussion [Green et al., 2013]

Image credit: Contour Crafting



▪ Numerical models allow for fewer simplifying assumptions compared to analytical 
models
▪ CAD-based tool geometries allow testing of prototype hardware and allow for better mission 

planning
▪ Arbitrary 3D domain geometries and material property distributions
▪ Can prescribe various loadings such as vibration, percussion, and more
▪ Multiphysics

▪ Finite element models (FEMs)
▪ Continuum-based
▪ Coupled Eulerian-Lagrangian treats regolith as a highly deformable solid being manipulated by a 

rigid tool
▪ Often used in modeling soil-tool and soil-wheel interactions on Earth [Tagar et al., 2015]

▪ Discrete element models (DEMs)
▪ Discontinuous, independently moving particles
▪ Represents regolith as individual grains interacting with each other and tools/wheels
▪ Becoming more common, but granular mechanics is extremely complex and hence difficult to 

describe computationally.
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Excavation: Numerical Modeling



▪ FEMs are established, well-understood formulations that have been applied to 
modeling of terrestrial geological media in multiple fields for many years

▪ The representation of granular regolith as a solid or fluid-like material is 
inaccurate, but may capture bulk behavior suitably
▪ What are the limitations of this approximation of net mechanical behavior specifically in the 

lunar case?
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Excavation: Numerical Modeling

From Tagar et al. (2015) 



▪ DEMs are computationally complex and 
the fledgling field of granular mechanics 
is still ill-resolved compared to the solid 
and/or fluid-like mechanics of FEMs
▪ Difficult to fully capture all the physics 

[Schmulevich, 2010]
▪ Different simulations require different 

material property calibrations- no reliable 
methods to determine which

▪ Very computationally expensive

▪ Do not handle wide PSDs well
▪ Particle size distribution is the most 

important aspect of regolith for simulants to 
replicate [Sibille et al., 2006]

▪ Planetary regolith generally has PSDs than 
span 7 or 8 orders of magnitude…
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Excavation: Numerical Modeling

From Coetzee et al. (2017) 



▪ Collect COLDArm excavation data (no force reduction)
▪ Ingest into analytical models for parameter estimations → first-pass approximations of physical properties 

during excavation
▪ Provides baseline data

▪ Develop percussive and vibratory excavation testing hardware 
▪ COLDArm scoop
▪ Surveyor replica scoop

▪ Develop experiment arrays and perform experiments to collect data
▪ Compare force reduction methodologies
▪ Compare modeling methods (analytical vs. FEM vs. DEM)

▪ Develop and calibrate FEMs and DEMs 
▪ Statistically compare efficiency and accuracy of calibrated model predictions relative to experimental data
▪ Calibration workflows and calibrated models will be new tools we can use to plan safe and efficient 

excavation operations planning
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Future Work and Products
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