Kaguya Terrain Camera (TC):

Instrument Overview

and Data Products

H. Sato¹, J. Haruyama¹ ¹Japan Aerospace Exploration Agency

© JAXA/SELENE

Spacecraft Overview

Mission period	2007 Sep. to 2009 Jun
Orbit altitude (nominal)	100 km \pm 30 km
Orbit inclination	90° (±3°)
Revolution period	118 min.
Stabilization system	Three axis stabilization

15 Mission Instruments (~ 300 kg)

XRS	X-ray Spectrometer
GRS	Gamma-ray Spectrometer
CPS	Charged Particle Spectrometer
МІ	Multi-band Imager
SP	Spectral Profiler
тс	Terrain Camera
LRS	Lunar Radar Sounder
LALT	Laser Altimeter
RSAT	Relay Satellite Transponder
VRAD	VLBI Radio Source
LMAG	Lunar Magnetometer
PACE	Plasma Energy Angle and Composition
RS	Radio Science
UPI	Upper atmosphere Plasma Imager
HDTV	High Definition TV System

2/16

3/16

Terrain Camera Specifications

TC Geometries

Stereo- and Mono-scopic dataStereoMono

[2008-02-27] Incidence Angle 48° Swath mode: Nominal (35km)

[2008-06-16] Incidence Angle 74° Swath mode: Full (40km) 5/16

• Width of **Stereo** images are <u>narrower</u> (to reduce data transfer rate)

bkr

• Mono images are acquired on higher incidence angles

(+ Mons Gruithuisen Gamma; 319.3°E, 36.6°N)

TC/MI Observation Schedules

6/16

TC Coverage Map

Nominal mission ~ 2008-10-31 Extended mission ~ 2009-06-02

7/16

Stereo Imaging

Mono (morning)

Mono (evening)

(Nearly entire surfaces are covered.)

TC DTM Mosaic

8/16

Shadows and higher (>75°) incidence images result in gores in high latitudes.

TC+MI DTM Mosaic

9/16

<u>MI DTM</u> with relatively <u>smaller incidence angles</u> (but lower resolution) filled most (not all) of the gores.

TC+MI DTM Mosaic

10/16

<u>MI DTM</u> with relatively <u>smaller incidence angles</u> (but lower resolution) filled most (not all) of the gores.

TC+MI DTM Mosaic

<u>MI DTM</u> with relatively <u>smaller incidence angles</u> (but lower resolution) filled most (not all) of the gores.

TC+MI+LOLA DTM

The gores in high latitudes (including PSRs) are finally filled by LOLA data \rightarrow <u>SLDEM2013</u> product

Offset of TCDTM - LOLA

~6m on average, possibly due to the georeferencing issue.

 \rightarrow now fixed in <u>SLDEM2015</u> (available from PDS-geoscience node)

Accuracy of TC DTM

Horizontal Offset

TC (self offsets)	6.7 m on average (σ = 8.5 m) in longitude
	5.3 m on average (σ = 12 m) in latitude
Apollo LRRR [†]	12.3 m on average in longitude
	22.0 m on average in latitude
MI, LALT	<10 m

[†]Laser Ranging RetroReflector

Vertical Offset	
TC (self offsets)	5 m on average (σ = 5 m)
Apollo LRRR †	4.7 m on average (from 3 to 6 m)
LALT	0 m on average (σ = 3.2 m in mare) ※ after matching correction with LALT

Horizontal offset is ~10 m, Vertical offset is ~5 m

TC Data Products

https://data.darts.isas.jaxa.jp/pub/pds3/

15/16

Directory Name	Data type and Specifications
sIn-I-tc-3- <mark>s</mark> -level2b0-v1.0/	Monoscopic-mode, radiometric calibration
sIn-I-tc-3-w-level2b0-v1.0/	Stereo-mode, radiometric calibration
sln-l-tc-3-sp-support-level2b0-v1.0/	Monoscopic-mode, radiometric calibration, supporting observation for SP
sln-l-tc-4- <mark>dem</mark> -ortho-v1.0/	Elevation from TC, MI, and LOLA, geometry correction, each scene
sln-l-tc-4- <mark>dtm</mark> -ortho-v3.0/	Elevation only from TC stereo, geometry correction, each scene
sln-l-tc-5- <mark>dtm</mark> -map-v2.0/	Elevation only from TC stereo, Map projected, 3°x3°, including neighboring orbit data
sln-l-tc-5- <mark>dtm</mark> -map-seamless-v2.0/	Elevation only from TC stereo, Map projected mosaic, 1°x1°, mixed orbit data
sln-l-tc-5-evening-map-v4.0/	Evening images from monoscopic images, Map projected, 3°x3°, including neighboring orbit data
sIn-I-tc-5-morning-map-v4.0/	Morning images from monoscopic images, Map projected mosaic, 1°x1°, mixed orbit data
sIn-I-tc-5-ortho-map-v2.0/	Images from monoscopic images, Map projected, 3°x3°, including neighboring orbit data
sIn-I-tc-5-ortho-map-seamless-v2.0/	Images from monoscopic images, Map projected mosaic, 1°x1°, mixed orbit data
sln-l-tc-5-sl <mark>dem</mark> 2013-v1.0/	Elevation from TC, MI, and LOLA, Map projected mosaic

Summary

Terrain Camera (TC) is monochrome line sensor with two heads for selfstereo imaging.

Low-sun areas and shadows in high latitudes are filled by MI and LOLA DTM.

Mosaic products of DTM, ortho images, morning-, and evening- images are available.